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Microsound

Alberto de Campo

Since the pioneering work of Dennis Gabor and lannis Xenakis, the idea of compos-
ing music and sound from minute particles has been an interesting domain for both
scientific and artistic research. The most comprehensive book on the topic, Micro-
sound (Roads, 2001a), covers historical, aesthetic, and technical considerations, and
provides an extensive taxonomy of variants of particle-based sound synthesis and
transformation. Though implementations of these variants are scattered across plat-
forms, many of them were realized in earlier incarnations of SuperCollider.

This chapter provides a collection of detailed example implementations of many
fundamental concepts of particle-based synthesis which may serve as starting points
for adaptations, extensions, and further explorations by readers.

Human ears perceive sounds at different time scales quite differently; therefore,
examples are provided which allow perceptual experiments with sound materials at
the micro time scale.

16.1 Points of Departure

Imagine a sine wave that began before the big bang and will continue until past the
end of time. If that is difficult, imagine a pulse of infinite amplitude but also infinitely
short, so its integral is precisely 1.

In 1947 Dennis Gabor answered the question “What do we hear?” in an unusual
way (Gabor, 1947): instead of illustrating quantum wave mechanics with acoustical
phenomena, he did the opposite—applying a formalism from quantum physics to
auditory perception, he obtained an uncertainty relation for sound. By treating sig-
nal representation (which is ignorant of frequency) and Fourier representation
(which knows nothing about time) as the extreme cases of a general particle-based
view on acoustics, he introduced acoustic quanta of information that represent the
entity of maximum attainable certainty (or minimum uncertainty). He posited that
sound can be decomposed into elementary particles which are vibrations with sta-
tionary frequencies modulated by a probability pulse; in essence, this is an envelope
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shaped like a Gaussian distribution function. This view influenced Iannis Xenakis by
1960 (Xenakis, 1992) to consider sounds as masses of particles he called “grains”
that can be shaped by mathematical means.

Sounds at the micro time scale (below, say, 100 milliseconds) became accessible
for creative experiments following the general availability of computers. While much
computer music models electronic devices (such as oscillators, filters, or envelope
generators), a number of pioneers have created programs to generate sound involv-
ing decisions at the sample time scale. These include Herbert Briin’s SAWDUST
(1976), G. M. Koenig’s SSP (early 1970s), and Iannis Xenakis’s Stochastic Synthesis
(described first in Xenakis (1971) and realized as the GENDYN program in 1991;
see also Hoffmann (2000), Luque (2006), and N. Collins’s Gendy UGens for
SuperCollider).

Following concepts by Xenakis, Curtis Roads began experimenting with granular
synthesis on mainframe computers in 1974; Barry Truax implemented the earliest
real-time granular synthesis engine on special hardware beginning in 1986, and real-
ized the pieces Riverrun and Wings of Nike with this system (Truax, 1988).

Trevor Wishart has called for a change of metaphor for music composition based
on his experience of making electroacoustic music (Wishart, 1994): rather than ar-
chitecture (of pitch/time/parameter constructions), chemistry or alchemy can pro-
vide models for the infinite malleability of sound materials in computer music. This
extends to the micro time scale, where it is technically possible to obtain a nearly
infinite differentiation in creating synthetic grains, though this is constrained by lim-
itations of differentiation in human hearing.

Horacio Vaggione has explored the implications of musical objects at different
time scales both in publications (Vaggione, 1996, 2001) and in fascinating pieces
(Agon, Nodal, and others).

Many physical sounds can be described as granular structures: dolphins commu-
nicate by clicking sounds; many insects produce micro sounds (e.g., crickets make
friction sounds with a rasping action (stridulation) filtered by mechanical resonance
of parts of their exoskeletons; bats echolocate obstacles and possible prey by emit-
ting short ultrasound bursts and listening to the returning sound reflections.

Many sounds that involve a multitude of similar objects interacting will induce
global percepts with statistical properties: rustling leaves produce myriad single
short sounds, as do pebbles when waves recede from the shore; the film sound staple
of steps on gravel can be perceived in these terms, as can bubbles in liquids, whether
in a brook or in a frying pan.

Some musical instruments can be described and modeled as granular impact
sounds passed through filters and resonators: guiro, rainstick, rattles, maracas, fast
tone repetitions on many instruments, fluttertongue effects on wind instruments,
and any instrument that can be played with drum rolls.
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The microsound perspective also can be applied fruitfully in sound analysis, as
initiated by Gabor. Wavelet analysis can decompose signals into elementary wave-
forms (Kronland-Martinet, 1988), and more recently Matching Pursuit Wavelet
Analysis has been employed to create granular representations of sound which offer
new possibilities for sound visualization and transformation (Sturm et al., 2006,
2008).

16.2 Perception at the Micro Time Scale

As human listeners perceive sound events quite differently depending on the differ-
ent time scales at which they occur, it is quite informative to experiment with the
particularities of perception at the micro time scale. While there is a rich and inter-
esting literature on psychoacoustics (Moore, 2004; Buser and Imbert, 1992), it tends
to focus on a rather limited repertoire of sounds. For exploring new sound material,
making one’s own experiments (informed by psychoacoustics) can provide invalu-
able listening experience.

Pulses repeating at less than about 16 Hz will appear to most listeners as individual
pulses, while pulses at 30 Hz fuse into continuous tones. A perceptual transition
happens in between:

{Impulse.ar (XLine.kr(12, 48, 6, doneAction: 2)) * 0.112}.play; // up
{Impulse.ar (XLine.kr(48, 12, 6, doneAction: 2)) * 0.112}.play; // down
{Impulse.ar (MouseX.kr(12, 48, 1)) * 0.1 ! 2}.play; // mouse-controlled

We are quite sensitive to periodicities at different time scales; periodic pulses are
perceived as pitches if they repeat often enough, but how often is enough? With very
short-duration tones (on the order of 10 waveform repetitions) one can study how a
pitched tone becomes more like a click with different timbre shadings (see figure
16.1).

Very short grains seem softer than longer ones, because loudness impression is
formed over longer time windows (in psychoacoustics, this is called temporal inte-
gration). One can try comparing 2 alternating grains and adjusting their amplitudes
until they seem equal.

Pbindef(\grain,
\instrument, \gaborl, \freq, 1000, \dur, 1,
\sustain, Pseq([0.001, 0.1], inf),
\amp, Pseq([0.1, 0.1], inf)
).play;
// short grain 2x louder
Pbindef(\grain, \sustain, Pseq([0.001, 0.1], inf),\amp, Pseq([0.2, 0.1],
inf) );
// short grain 4x louder
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( // a gabor grain, gaussian-shaped envelope

SynthDef(\gabor, { |out, freq = 440, sustain = 1, pan, amp = 0.1, width = 0.25 |
var env = LFGauss.ar(sustain, width, Toop: 0, doneAction: 2);
var son = FSinOsc.ar(freq, 0.5pi, env);
OffsetOut.ar(out, Pan2.ar(son, pan, amp));

}, \ir ! 6).add;

// or an approximation with a sine-shaped envelope
SynthDef(\gaborl, { |out, amp=0.1, fregq=440, sustain=0.01, pan]|

var snd = FSinOsc.ar(freq);

var env = EnvGen.ar(Env.sine(sustain, amp), doneAction: 2);

OffsetOut.ar(out, Pan2.ar(snd * env, pan));

}, \ir ! 5).add;
)
(
Pbindef(\grain,

\instrument, \gabor, \freq, 1000,

\dur, 0.5, \sustain, 20/1000, \amp, 0.2
).play;
)
Pbindef(\grain, \sustain, 10/Pkey(\freq));
Pbindef(\grain, \sustain, 5/Pkey(\freq));
Pbindef(\grain, \sustain, 3/Pkey(\freq));
Pbindef(\grain, \sustain, 2/Pkey(\freq));
Pbindef(\grain, \sustain, 1/Pkey(\freq));

// successively shorter, end
Pbindef(\grain, \sustain, Pseq((10..1)) / Pkey(\freq)).play;

// random drift of grain duration
Pbindef(\grain, \sustain, Pbrown(l, 10, 3) / Pkey(\freq), \dur, 0.1).play

Figure 16.1
Short grain durations, transition from pitched to colored clicks.
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(
p = ProxySpace.push;

~source = { SinOsc.ar * 0.1 };
~silence = { |silDur=0.01|
EnvGen.ar(
Env([O, 1, 1, O, O, 1, 1, 0], [0.01, 2, 0.001, silDur, 0.001,
2, 0.01D),
doneAction: 2) ! 2
[ &
~listen = ~source * ~silence;
~Tisten.play;
)

~silence.spawn([\si1Dur, 0.001]); // sounds Tike an added pulse
~silence.spawn([\si1Dur, 0.003]1);

~silence.spawn([\si1Dur, 0.01]);

~silence.spawn([\si1Dur, 0.031); // a pause in the sound

// try the same examples with noise:
~source = { WhiteNoise.ar * 0.1 };

p.pop

Figure 16.2
Perception of short silences.

Pbindef(\grain, \sustain, Pseq([0.001, 0.1], inf),\amp, Pseq([0.4, 0.1],
inf) );

With nearly rectangular envelope grains, the effect is even stronger (see example
on the book Web site).

Short silences imposed on continuous sounds have different effects dependent on
the sound: on steady tones, short pauses seem like dark pulses; only longer ones
seem like silences; and short interruptions on noisier signals may be inaudible (see
figure 16.2).

When granular sounds are played almost simultaneously, the order in which they
occur can be difficult to discern. Figure 16.3 plays 2 sounds with an adjustable lag
between them. Lags above around 0.03 second are easily audible; shorter ones be-
come more difficult.

In fast sequences of granular sounds, order is hard to discern, as the grains fuse
into 1 sound object. But when the order changes, the new composite does sound dif-
ferent (see figure 16.4).
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(

// a simple percussive envelope
SynthDef(\percSin, { |out, amp=0.1, freq=440, sustain=0.01, pan]|
var snd = FSinOsc.ar(freq);
var env = EnvGen.ar(
Env.perc(0.1, 0.9, amp), timeScale: sustain, doneAction: 2);
OffsetOut.ar(out, Pan2.ar(snd * env, pan));

}, \ir 1 5).add;
)

(

Pbindef(\1lo,

\instrument, \percSin, \sustain, 0.05,
\freq, 250, \amp, 0.2, \dur, 0.5, \lag, 0
) .play;
Pbindef(\hi,
\instrument, \percSin, \sustain, 0.05,
\freq, 875, \amp, 0.1, \dur, 0.5, \lag, 0
).play;
)
// try different lag times between them
Pbindef(\hi, \lag, 0.1);
Pbindef(\hi, \lag, 0.03);
Pbindef(\hi, \lag, 0.01);
Pbindef(\hi, \lag, 0.003);

// hi too early or too late by a fixed time - which one is first?
Pbindef(\hi, \lag, ([-1, 1].choose * 0.01).postIn).play;
Pbindef(\hi, \lag, ([-1, 1].choose * 0.02).postl1n);

// is it easier to hear when the sounds are panned apart?
Pbindef(\hi, \pan, 0.5); Pbindef(\1o, \pan, -0.5);
Pbindef(\hi, \pan, 0); Pbindef(\lo, \pan, 0);

Figure 16.3
Order confusion with sounds in fast succession.
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(

Pbindef(\graind,
\instrument, \percSin, \sustain, 0.03, \amp, 0.2,
\freq, Pshuf([1000, 600, 350, 250]1), // random every each time
\dur, 0.005

).play;

// repeat grain cluster
Tdef(\grain, { Tloop { Pbindef(\graind).play; l.wait } }).play;
)
// fixed order
Pbindef(\grain4, \freq, Pseq([1000, 600, 350, 250].scramble));

// different order every time
Pbindef(\grain4, \freq, Pshuf([1000, 600, 350, 250]1));

Figure 16.4
Multiple grains fuse into one composite.

16.3 Grains and Clouds

Any sound particle shorter than about 100 ms (this is not a hard limit, only an order
of magnitude) can be considered a grain, and can be used for creating groups of
sound particles. Such groups may be called streams or trains, if they comprise regular
sequences, or clouds, if they are more varied. We will first look at the details of single
grains, and then at the properties that arise as groups of them form streams or
clouds.

16.3.1 Grain Anatomy

A grain is a short sound event consisting of a waveform and an envelope. The wave-
form can be generated synthetically, taken from a fixed waveform, or selected from
recorded material, and possibly processed. The envelope is an amplitude shape im-
posed on the waveform and can strongly influence the grain’s sound character. We
restrict our initial examples to simple synthetic waveforms and experiment with the
effects of different envelopes, waveforms, and durations on single grains. We can
create an envelope and a waveform signal as arrays; in order to impose the envelope
shape on the waveform, they are multiplied, and the 3 signals are plotted, as shown
in figure 16.5.

1}

e
w

Env.sine.asSignal(400).as(Array);
Array.fi11(400, {[|i| (i * 2pi/40).sin});
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Figure 16.5
Envelope, waveform, grain.

g=e*w
[e, w, g].flop.flat.plot2("envelope, wave, grain", Rect(0, 0, 408, 600),
numChannels: 3);

Env.sine s close to a Gaussian envelope, providing reasonable approximations of
sound quanta as postulated by Gabor. The LFGauss UGen can be used as a higher-
precision Gaussian envelope for grains, see { LFGauss.ar(0.01, 0.26) }.plot2 or
the LFGauss help file.

Assembling these elements in a SynthDef allows creating many variants of 1 kind
of grain by varying waveform, frequency, grain duration, amplitude, and spatial
position:

(

SynthDef(\gabor0, {|out, freq = 440, sustain = 0.02, amp = 0.2, pan|
var env = EnvGen.ar(Env.sine(sustain, amp), doneAction: 2);
var sound = SinOsc.ar(freq) * env;
OffsetOut.ar(out, Pan2.ar(sound, pan))

}, \ir.dup(5)).add;

)

Synth(\gabor0); // test with synth

Synth(\gabor0, [\freq, 1000, \sustain, 0.005, \amp, 0.1, \pan, 0.5]);
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Env.sine.plot2; // approx. gaussian

Env([0, 1, 1, 0], [0.25, 0.5, 0.25] * 0.1, \sin).test.plot2; // quasi-gaussian
Env([0, 1, 1, 0], [0.25, 0.5, 0.25] * 0.1, \Tin).test.plot2; // 3 stage line
segments.

Env([0, 1, 1, 0], [0.25, 0.5, 0.25] * 0.1, \welch).test.plot2; // welch curve
interpolation

Env([1, 0.001], [0.1], \exp).test.plot2; // expoDec (exponential decay);
Env([0.001, 1], [0.1], \exp).test.plot2; // revExpoDec (reverse exponential decay);
Env.perc(0.01, 0.09).test.plot2;

( // a sinc function envelope
a=97? Q;
q.makeSinc = { |qg, num=1, size=400]
dup({ |x|] x = x.1inTin(0, size-1, -pi, pi) * num; sin(x) / x }, size);
b
a = g.makeSinc(6);
a.plot(bounds: Rect(0,0,409,200), minval: -1, maxval: 1);
)

Figure 16.6
Making different envelope shapes.

(instrument: \gabor0).play; // test with event
(instrument: \gabor0, sustain: 0.001, freq: 2500, amp: 0.05, pan: -0.5).

play;
Synth.grain(\gabor0, [\freq, 2000, \sustain, 0.003]) // higher efficiency,
as no NodeID is kept

s.sendMsg("s_new", \gabor0, -1, 0, 0, \freq, 2000, \sustain, 0.003); //
even more efficient, as no Synth object is created.

This example demonstrates recommended practices for granular synthesis. As
grains may have extremely short durations, audio-rate envelopes are preferred.
Timing between grains should be as accurate as possible, as the ear is very sensitive
to microrhythmic variations; thus one uses 0ffsetOut to start the grain’s synthesis
process with single-sample accuracy. Since grain synthesis parameters typically do
not change while the grain plays, efficiency can be optimized with \ir arguments.
The 2 final lines show possible trade-offs of CPU load versus programming effort.
Synth.grain creates nodes without nodelDs (reducing overhead), and s.sendMsg
constructs the same even more efficiently with nodeID -1: it does not create any
language side Synth object, but directly messages the Server. Finally, adding synth-
defs also makes them available for use in patterns. The tests shown play single grains
both as synths and as events, using every parameter at least once to verify that they
work correctly.
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Figure 16.7
Envelopes: Gaussian, quasi-Gaussian, linear, welch.
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Figure 16.8
Envelopes: expodec, rexpodec, percussive, sinc-function.
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( // a gabor (approx. gaussian-shaped) grain

SynthDef (\gaborl, { |out, amp=0.1, freg=440, sustain=0.01, pan]|
var snd = FSinOsc.ar(freq);
var amp2 = amp * AmpComp.ir(freq.max(50)) * 0.5;
var env = EnvGen.ar(Env.sine(sustain, amp2), doneAction: 2);
OffsetOut.ar(out, Pan2.ar(snd * env, pan));

}, \ir ! 5).add;

// wider, quasi-gaussian envelope, with a hold time in the middle.
SynthDef (\gabWide, { |out, amp=0.1, fregq=440, sustain=0.01, pan, width=0.5]
var holdT = sustain * width;
var fadeT = 1 - width * sustain * 0.5;
var snd = FSinOsc.ar(freq);
var amp2 = amp * AmpComp.ir(freq.max(50)) * 0.5;
var env = EnvGen.ar(Env([0, 1, 1, 0], [fadeT, holdT, fadeT], \sin),
levelScale: amp2,
doneAction: 2);
OffsetOut.ar(out, Pan2.ar(snd * env, pan));
}, \ir ! 5).add;

// a simple percussive envelope
SynthDef(\percSin, { |out, amp=0.1, freq=440, sustain=0.01, pan]|
var snd = FSinOsc.ar(freq);
var amp2 = amp * AmpComp.ir(freq.max(50)) * 0.5;
var env = EnvGen.ar(
Env.perc(0.1, 0.9, amp2),
timeScale: sustain,
doneAction: 2);
OffsetOut.ar(out, Pan2.ar(snd * env, pan));
}, \ir ! 5).add;

// a reversed percussive envelope
SynthDef(\percSinRev, { |out, amp=0.1, freq=440, sustain=0.01, pan|
var snd = FSinOsc.ar(freq);
var amp2 = amp * AmpComp.ir(freq.max(50)) * 0.5;
var env = EnvGen.ar(
Env.perc(0.9, 0.1, amp2),
timeScale: sustain,
doneAction: 2
);
OffsetOut.ar(out, Pan2.ar(snd * env, pan));
}, \ir ! 5).add;

Figure 16.9
SynthDefs with different envelopes.
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SynthDef(\expodec, { |out, amp=0.1, freq=440, sustain=0.01, pan]|
var snd = FSinOsc.ar(freq);
var amp2 = AmpComp.ir(freg.max(50)) * 0.5 * amp;
var env = XLine.ar(amp2, amp2 * 0.001, sustain, doneAction: 2);
OffsetOut.ar(out, Pan2.ar(snd * env, pan));

}, \ir ! 5).add;

SynthDef (\rexpodec, { |out, amp=0.1, freq=440, sustain=0.01, pan]|
var snd = FSinOsc.ar(freq);
var amp2 = amp * AmpComp.ir(freq.max(50)) * 0.5;
var env = XLine.ar(amp2 * 0.001, amp2, sustain, doneAction: 2)
* (AmpComp.ir(freq) * 0.5);
OffsetOut.ar(out, Pan2.ar(snd * env, pan));

// an exponential decay envelope

// a reversed exponential decay envelope

}, \ir ! 5).add;

)
Figure 16.9
(continued)

SC3 allows for quick testing of envelope variants; below, we create a number of
common envelopes which can have quite different effects on the sound character of
the grain: Gaussian envelopes minimize the spectral side effects of the envelope, leav-
ing much of the waveform character intact; quasi-Gaussian envelopes increase grain
energy by holding full amplitude in the middle of its duration (welch interpolation is
similar); exponential decay creates grains which can sound like they come from a
physical source because physical resonators decay exponentially; reverse exponen-
tial decay can be an intriguing special case of “unnaturalness”; and percussive enve-
lopes with controllable attack time can articulate different attack characteristics.
More complex envelopes (e.g., the sinc function) can be created with sampled math-
ematical functions or taken from recorded material and played with buffers. (See
figures 16.6-16.8.)

With synthdefs using these envelopes (see figure 16.9), we can experiment with the
fundamental grain parameters: waveform frequency, envelope shape, and grain
duration.

In order to access all parameters of the granular stream while it is playing, figure
16.10 uses the Pbindef class (see its Help file).

Parameter changes can have side effects of interest. For example, the \rexpodec
synthdef’s (reverse exponential decay) envelope ends with a very fast cutoff—when
the waveform amplitude is high at that moment, it creates a click transient. A (for-
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// figure 16.10 - changing grain duration, frequency, envelope
(
Pbindef(\grain0,
\instrument, \gaborl, \freq, 500,
\sustain, 0.01, \dur, 0.2
).play;
)
// change grain durations
Pbindef(\grain0, \sustain, 0.1);
Pbindef(\grain0, \sustain, 0.03);
Pbindef(\grain0, \sustain, 0.01);
Pbindef(\grain0, \sustain, 0.003);
Pbindef(\grain0, \sustain, 0.001);
Pbindef(\grain0, \sustain, Pn(Pgeom(0.1, 0.9, 60)));
Pbindef(\grain0, \sustain, Pfunc({ exprand(0.0003, 0.03) 1}));
Pbindef(\grain0, \sustain, 0.03);

// change grain waveform (sine) frequency
Pbindef(\grain0, \freq, 300);
Pbindef(\grain0, \freq, 1000);
Pbindef(\grain0, \freq, 3000);
Pbindef(\grain0, \freq, Pn(Pgeom(300, 1.125, 32)));
Pbindef(\grain0, \freq, Pfunc({ exprand(300, 3000) 1}));
Pbindef(\grain0, \freq, 1000);

// change synthdef for different envelopes
Pbindef(\grain0, \instrument, \gaborl);
Pbindef(\grain0, \instrument, \gabWide);
Pbindef(\grain0, \instrument, \percSin);
Pbindef(\grain0, \instrument, \percSinRev);
Pbindef(\grain0, \instrument, \expodec);
Pbindef(\grain0, \instrument, \rexpodec);
Pbindef(\grain0, \instrument, Prand([\gabWide, \percSin, \percSinRev], inf));

Figure 16.10
Changing grain duration, frequency, envelope.
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(  // synchronous - regular time intervals
Pbindef(\grain0).clear;
Pbindef(\grain0).play;
Pbindef(\grain0,
\instrument, \expodec,
\freq, Pn(Penv([200, 1200], [10], \exp), inf),
\dur, 0.1, \sustain, 0.06
33
)
// different fixed values
Pbindef(\grain0, \dur, 0.06) // rhythm
Pbindef(\grain0, \dur, 0.035)
Pbindef(\grain0, \dur, 0.02) // fundamental frequency 50 Hz

// time-changing values: accelerando/ritardando
Pbindef(\grain0, \dur, Pn(Penv([0.1, 0.02], [4], \exp), inf));
Pbindef(\grain0, \dur, Pn(Penv([0.1, 0.02, 0.06, 0.01].scramble, [3,
2, 1], \exp), inf));

// repeating values: rhythms or tones
Pbindef(\grain0, \dur, Pstutter(Pwhite(2, 15), Pfunc({ exprand(0.01,
0-3) F)));

// introducing irregularity - quasi-synchronous
Pbindef(\grain0, \dur, 0.03 * Pwhite(0.8, 1.2))
Pbindef(\grain0, \dur, 0.03 * Pbrown(0.6, 1.4, 0.1)) // slower drift
Pbindef(\grain0, \dur, 0.03 * Pwhite(0.2, 1.8))

// average density constant, vary degree of irregularity
Pbindef(\grain0, \dur, 0.02 * Pfunc({ (0.1.1inrand * 3) + 0.9 }));
Pbindef(\grain0, \dur, 0.02 * Pfunc({ (0.3.Tinrand * 3) + 0.3 }));
Pbindef(\grain0, \dur, 0.02 * Pfunc({ (1.0.Tlinrand * 3) + 0.0 }));
Pbindef(\grain0, \dur, 0.02 * Pfunc({ 2.45.Tinrand.squared })); //
very irregular

( // coupling - duration depends on freq parameter
Pbindef(\grain0,
\freq, Pn(Penv([200, 1200], [10], \exp), inf),
\dur, Pfunc({ |ev| 20 / ev.freq })
)3
)

Figure 16.11
Different control strategies applied to density.
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// different freq movement, different timing
Pbindef(\grain0, \freq, Pbrown(48.0, 96.0, 12.0).midicps);

(  // duration depends on freq, with some variation - tendency mask
Pbindef(\grain0,
\freq, Pn(Penv([200, 1200], [10], \exp), inf),
\dur, Pfunc({ |ev| 20 / ev.freq * rrand(0.5, 1.5) })
)3
)

Figure 16.11
(continued)

ward) \expodec may employ this transient for attack shaping: by adjusting the oscil-
lator’s initial phase, different attack colors can be articulated (see, e.g., the book Web
site).

16.3.2 Textures, Masses, Clouds

When shifting attention from individual sound particles to textures composed of
larger numbers of microsound events, relations between aspects of the individual
events in time create a number of emerging perceptual properties. Different terms
have been used for these streams: regular sequences are often called trains; texture is
a rather flexible term used by, among others, Trevor Wishart (Wishart, 1994); Ed-
gard Varése often spoke of masses and volumina of sound; the cloud metaphor sug-
gests interesting vocabulary for imagining clouds of sound particles, inspired by the
rich morphologies of clouds in Earth’s atmosphere or in interstellar space, and their
evolution in time.

In synchronous granular synthesis, the particles occur at regular intervals and
form either a regular rhythm at low densities or an emerging fundamental frequency
at higher densities. Quasi-synchronous streams introduce more local deviations,
while in asynchronous streams the timing between events is highly irregular; in the
latter case, density really becomes a statistical description of the average number of
sounding particles per time unit. Figure 16.11 demonstrates some general strategies
for controlling cloud parameters, here applied to cloud density:

Fixed values, which create a synchronous stream
Time-varying values, specified by an envelope pattern, creating accelerando and
ritardando
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Random variation within ranges, with density, which creates a transition to asyn-
chronous streams

Tendency masks, which combine time-varying values with random ranges, such that
the range limits change over time

Parameter-dependent values, a cloud parameter derived from another cloud param-
eter. (The generalization of this approach is called Grainlet Synthesis; see Roads,
2001: 125-129).

These strategies can be applied to any control parameter. Figure 16.12 shows dif-
ferent combinations of control strategies and grain and cloud parameters described
so far.

16.3.3 CloudGenMini

CloudGenMini is a reimplementation of CloudGenerator, a classic microsound pro-
gram written by Curtis Roads and John Alexander, which creates clouds of sound
particles based on user specifications. Here, the discussion focuses on the synthesis
control techniques and the aesthetic aspects; coding style aspects are covered in
chapter 5. (For the code, see CloudGenMiniFull.scd on the book Web site.) Cloud-
GenMini provides a collection of synthdefs for different sound particle flavors, a
Tdef that creates the grain cloud based on current parameter settings, crossfading
between stored settings, and a GUI for playing it. This allows creating clouds based
on tendency masks, which was a central feature of CloudGenerator.

The Tdef(\cloud0) plays a loop which creates values for each next grain by ran-
dom choice within the ranges for each parameter given in the current settings. Espe-
cially for high-density clouds, using s.sendBundle is more efficient than using Event
.play or patterns.

Synthesis processes with multiple control parameters have large possibility spaces.
When exploring these by making manual changes, one may spend much time in
relatively uninteresting areas. One common heuristic that addresses this is to create
random ranges which may assist in finding more interesting zones. CloudGenMini
can create random ranges for all synthesis and cloud parameters, within global max-
imum settings, and can switch or interpolate between 8 stored range settings.

CloudGenerator allowed specifying a total cloud duration, start and end values
for high and low band limit (the minimum and maximum frequencies of the grain
waveform); and grain duration, density, and amplitude to define a cloud’s evolution
in time. CloudGenMini generalizes this approach: by providing ranges for all pa-
rameters, and by crossfading between them, every parameter can mutate from deter-
ministic to random variation within a range (i.e., with a tendency mask). For example,
a densityRange fading from [10, 10] to [1, 100] creates a synchronous cloud that
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(
Pbindef(\grain0).clear;
Pbindef(\grain0,
\instrument, \expodec,
\freq, 200,
\sustain, 0.05, \dur, 0.07
) .play;
)
// time-varying freq with envelope pattern
Pbindef(\grain0, \freq, Pn(Penv([200, 1200], [10], \exp), inf));
// random freq
Pbindef(\grain0, \freq, 400 * Pwhite(-24.0, 24).midiratio);
// timechanging with random variation
Pbindef(\grain0, \freq, Pn(Penv([400, 2400], [10], \exp), inf) * Pwhite(-24.0, 24).
midiratio);

// panning
Pbindef(\grain0, \pan, Pwhite(-0.8, 0.8)); // random
Pbindef(\grain0, \pan, Pn(Penv([-1, 1], [2]), inf)); // tendency
Pbindef(\grain0, \pan, Pfunc({ |ev| ev.freq.explin(50, 5000, -1, 1) })); // coupled
to freq

// time scattering variants
Pbindef(\grain0, \dur, 0.1 * Pwhite(0.5, 1.5)); // random range
Pbindef(\grain0, \dur, 0.05 * Prand([0, 1, 1, 2, 4], inf)); // rhythmic random

// amplitude - randomized
Pbindef(\grain0, \amp, Pwhite(0.01, 0.2)); // linear
Pbindef(\grain0, \amp, Pwhite(-50, -14).dbamp); // exponential - more depth
Pbindef(\grain0, \dur, 0.025 * Prand([0, 1, 1, 2, 4], inf)); // could be denser now

// random amplitude envelopes with Pseg

(
Pbindef(\grain0,
\amp, Pseg(
Pxrand([-50, -20, -30, -40] + 10, inf), // level pattern
Pxrand([0.5, 1, 2, 3], inf), // time pattern
Prand([\step, \1in], inf) // curve pattern
) .dbamp
35
)

// grain sustain time coupled to freq
Pbindef(\grain0, \sustain, Pkey(\freq).reciprocal * 20).play;

Figure 16.12
Control strategies applied to different parameters.



480 Alberto de Campo

evolves to asynchronicity over its duration. (CloudGenerator also offered sound file
granulation; CloudGenMini leaves this as an exercise for the reader.)

16.4 Granular Synthesis on the Server

The examples so far have created every sound particle as 1 synthesis process. How-
ever, SC3 also has a selection of UGens that implement granular synthesis entirely on
the sound server. Though one can obtain similar sounds using either approach, it is
interesting to experimentally learn how parameter control by UGens suggests differ-
ent solutions and thus leads to different ideas.

The first granular synthesis UGen in SC was TGrains, which granulates sound files
(more on this below); with SC version 3.1 the UGens GrainSin, GrainFM, GrainBuf,
GrainIn, and Warpl became part of the SC3 distribution. Third-party UGen libraries
(as in sc3-plugins) and Quarks are worth checking for more granular synthesis vari-
ants and options.

GrainSin creates a stream of grains with a sine waveform and a Hanning-shaped
envelope; grains are triggered by a control signal’s transition from negative to posi-
tive. Below is a simple conversion of the GrainSin Help file example to JIT style (see
chapter 7). Briefly, a ProxySpace is an environment for NodeProxies (placeholders
for synthesis processes). NodeProxies can be changed and reconfigured very flexibly
while running, making them ideally suited for fluid exploration of synthesis variants.

p = ProxySpace.push;

(

~grain.play;

~grain = {arg envbuf = -1, density = 10, graindur = 0.1, amp = 0.2;
var pan, env, freqdev;
var trig = Impulse.kr(density);
pan = MouseX.kr(-1, 1); // use mouse-x for panning
// use WhiteNoise and mouse Y to control deviation from center
freqdev = WhiteNoise.kr(MouseY.kr(400, 0));
GrainSin.ar(2, trig, graindur, 440 + freqdev, pan, envbuf) * amp

GrainSin allows for custom grain envelopes, which must be uploaded as buffers
on the server. In the next example, an envelope is converted to a Signal and is sent
to a buffer, and the ~grain proxy is set to use that buffer number. A bufnum of -1 sets
it to the default envelope.

qa=9q7 O // make a dictionary to keep things around
g.envs = (); // space for some envelopes
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g.bufs = ; // and some buffers

// make an envelope and send it to a buffer
q.envs.percl = Env([0, 1, 0], [0.1, 0.9], -4);
q.bufs.percl = Buffer.sendCollection(s, g.envs.percl.discretize, 1);
~grain.set(\envbuf, -1); // switch to built-in envelope
~grain.set(\envbuf, g.bufs.percl.bufnum); // or customized

Besides changing the parameter controls of the proxy to fixed values, one can also
map control proxies to them:

~grain.set(\density, 20);
~grain.set(\graindur, 0.03);
// map a control proxy to a parameter
~grdur = 0.1; ~grain.map(\graindur, ~grdur);
~grdur = {LFNoisel.kr(1l).range(0.01, 0.1) }; // random graindur
~grdur = {Sin0Osc.kr(0.3).range(0.01, 0.1)}; // periodic
~grdur = 0.01; // fixed value
// create random densities from 2 to 2 ** 6, exponentially distributed
~grdensity = {2 ** LFNoise0.kr(1).range(0, 6)};
// map to density control
~grain.map(\density, ~grdensity);

At this point, exploration becomes more enjoyable with a NdefGui on the proxy and
adding Specs for its parameters with Spec.add (see the NdefGui Help file).

The GrainfM UGen introduces a variant: as the name implies, a pair of sine os-
cillators create frequency-modulated waveforms within each grain. Below is the
GrainFM Help file example rewritten as a nodeproxy, with MouseY controlling modu-
lation range; such rewrites are useful for learning how different controls affect the
sound.

~grain = {arg envbuf = -1, density = 10, graindur = 0.1, modfreq = 200;
var pan = WhiteNoise.kr;
var trig = Impulse.kr(density);
var freqdev = WhiteNoise.kr(MouseY.kr(0, 400));
var modrange = MouseX.kr(1l, 10);
var moddepth = LFNoisel.kr.range(l, modrange);
GrainFM.ar(2, trig, graindur, 440 + freqdev, modfreq, moddepth, pan,
envbuf) * 0.2
5

For more flexibility in experimentation, one can convert controls of interest to
proxies and access them in the main proxy, in this case, ~grain. Controls can then be
changed individually, and old and new control synthesis functions can be crossfaded.
Figure 16.13 is such a rewrite, where all parameters can be changed freely between
fixed values and synthesis functions, line by line, in any order.
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// figure 16.13 - GrainFM with individual control proxies
p = ProxySpace.push;

(

~trig = { |dens=10| Impulse.kr(dens) };

~freq = { MouseX.kr(100, 2000, 1) * LFNoisel.kr(1).range(0.25, 1.75)
};

~moddepth = { LFNoisel.kr(20).range(1, 10) };

~modfreq = 200;

~graindur = 0.1;

~grain = { arg envbuf = -1;
GrainFM.ar(2, ~trig.kr, ~graindur.kr,
~freq.kr, ~modfreq.kr, ~moddepth.kr,
pan: WhiteNoise.kr, envbufnum: envbuf) * 0.2
b
~grain.play;
)
// change control ugens:
~modfreq = { ~freq.kr * LFNoise2.kr(1).range(0.5, 2.0) }; // modfreq
roughly follows freq
~trig = { |dens=10| Dust.kr(dens)}; // random triggering, same
density
~freq = { LFNoise0.kr(0.3).range(200, 800) };
~moddepth = 3; // fixed depth
~graindur = { LFNoise0.kr.range(0.01, 0.1) };

Figure 16.13
GrainFM with individual control proxies.

Finally, we look at the GrainBuf UGen, which takes its waveform from a buffer on
the server. Typically used for sound file granulation, it can potentially produce vari-
ety and movement in the sound stream by constantly moving the file read position
(i.e., where in the sound file to take the next grain waveform from) and by varying
the playback rate. Even simply moving the file read position along the time axis
can create interesting articulation of the granular stream. Figure 16.14 rewrites a
GrainBuf Help file example with separate control proxies and explores a number of
different combinations of controls.

TGrains is very similar to GrainBuf, but only with a fixed envelope shape. GrainIn
is also similar, but it granulates an input signal and can use different buffer enve-
lopes. With the built-in multichannel panning (PanAz-like) common to this UGen
family, GrainIn can be used elegantly for spatially scattering (e.g., continually pro-
cessing) live input.
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b = Buffer.read(s, "sounds/allwlk01-44_1.aiff");
(

~grain.set(\wavebuf, b.bufnum);

~trig = { |dens=10| Impulse.kr(dens) };
~graindur = 0.1;

~filepos = {LFNoise2.kr(0.2).range(0, 1) };
~rate = { LFNoisel.kr.range(0.5, 1.5) };

~grain = { arg envbuf = -1, wavebuf = 0;
GrainBuf.ar(2, ~trig.kr, ~graindur.kr, wavebuf,
~rate.kr, ~filepos.kr, 2, WhiteNoise.kr, envbuf) * 0.2
¢
~grain.play;

)

// experiment with control proxies
~trig = { |dens=20| Impulse.kr(dens) };
~rate = { LFNoisel.kr.range(0.99, 1.01) };
~filepos = { MouseX.kr + LFNoise0.kr(100, 0.03) };
~graindur = 0.05;
~trig = { |dens=50| Dust.kr(dens) };

¢ = Buffer.sendCollection(s, Env.perc(0.01, 0.99).discretize, 1);
~grain.set(\envbuf, c.bufnum);

~grain.set(\envbhuf, -1);

~trig = { |dens=50| Impulse.kr(dens) }; ~graindur = 0.05;

Figure 16.14
GrainBuf with control proxies.

When comparing UGen-based and individual-grain particle syntheses, experi-
menting with UGens as controls allows for very interesting behavior—even much
patternlike behavior can be realized with Demand UGens (see Demand.Help file). On
the other hand, one cannot write one’s own special grain flavors with server-side
granular synthesis. Unless one is fluent enough in C++ to implement new UGens (see
chapter 25), one is limited to the synthesis processes provided as UGens.

16.5 Exploring Granular Synthesis Flavors
The most flexible starting point for creating one’s own microsound flavors is consid-

ering that grains can contain any waveform. Reviewing the synthdefs given in figure
16.9, all one needs to change is the sound source itself. As an exercise, we could
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replicate GrainFM and GrainBuf as synthdefs; \grainFM0 adds 3 parameters and
changes the sound source to an FM pair, while \grainFM1 uses a buffer envelope with
Osc1, a pseudo-UGen class written for this chapter and available on the book Web
site.

SynthDef(\grainFM1, {|out, envbuf, carfreq = 440, modfreq = 200, moddepth
=1,
sustain = 0.02, amp = 0.2, pan|
var env = Oscl.ar(envbuf, sustain, doneAction: 2);
var sound = SinOsc.ar(carfreq, SinOsc.ar(modfreq) * moddepth) * env;
OffsetOut.ar(out, Pan2.ar(sound, pan, amp))
}, \ir.dup(8)).add;

GrainBuf can be re-created with PlayBuf. Both synthdefs can be played with pat-
terns or tasks from sclang (examples are on the book Web site).

SynthDef(\grainBufl, {|out, envbuf, wavebuf, filepos, rate = 1, sustain =
0.02, amp = 0.2, pan]|
var env = Oscl.ar(envbuf, sustain, doneAction: 2);
var sound = PlayBuf.ar(l, wavebuf,
rate * BufRateScale.ir(wavebuf), 1,
startPos: BufFrames.ir(wavebuf) * filepos)
* env;
OffsetOut.ar(out, Pan2.ar(sound, pan, amp))
}, \ir.dup(8)).add;

Glisson synthesis is based on Iannis Xenakis’s use of glissandi (instead of fixed-
pitch notes) as building blocks for some of his instrumental music. Introducing a
linear sweep from freq to freq2 is sufficient for a minimal demonstration of the
concept. Of course, one can experiment freely with different periodic waveforms and
envelopes (see figure 16.15).

One possibility for organizing glissando structures is magnetization patterns
(Roads, 2001: 121-125). See the example on the book Web site.

Pulsar Synthesis is named after pulsars, spinning neutron stars discovered in 1967
that emit electromagnetic pulses in the range of 0.25 Hz to 642 Hz. This range of
frequencies crosses the time scale from rhythm to pitch, a central aspect of Pulsar
Synthesis. It also connects back to the history of creating electronic sounds with
analog impulse generators and filter responses.

The pulse waveform is determined by a fixed waveform, the pulsaret, and an en-
velope waveform, both of which are scaled to the pulse’s duration. Pulsar synthesis
was designed by Curtis Roads in conjunction with a special control model: a set of
tables which can be edited by drawing is used for designing both waveforms (for
pulsaret and envelope) and a group of control functions for synthesis parameters
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(
b = Buffer.read(s, "sounds/allwlk01-44_1.aiff");

SynthDef("glisson",
{ arg out = 0, envbuf, fregq=800, freq2=1200, sustain=0.001,
amp=0.2, pan = 0.0;
var env = Oscl.ar(envbuf, sustain, 2);
var fregenv = XLine.ar(freq, freq2, sustain);
OffsetOut.ar(out,
Pan2.ar(5in0Osc.ar(fregenv) * env, pan, amp)

)
}, \ir!7).add;
)
(

Tdef(\gliss0, { |e]
100.do({ arg i;
s.sendBundle(s.latency, ["/s_new", "glisson", -1, 0, 0,
\freq, i % 10 * 100 + 1000,
\freg2, i % 13 * -100 + 3000,
\sustain, 0.05,
\amp, 0.1,
\envbuf, b.bufnum
1;
3/ (3 + 10)).wait;
13
}).play;
)

Figure 16.15
Glisson synthesis.

over a given time; this concept has been expanded in the PulsarGenerator program
(written in SC2 by the author and Curtis Roads).

The 2 main control parameters in Pulsar Synthesis are fundamental frequency
(fundfreq), the rate at which pulses are emitted, and formant frequency (formfreq),
which determines how fast the pulsaret and envelope are played back—effectively
like a formant control. For example, at a fundfreq of 20 Hz, 20 pulses are emitted per
second; at a formfreq of 100 Hz, every pulse is scaled to 0.01 second duration, so
within 0.05 second of 1 pulsar period, the duty cycle where signal is present is only
0.01 second. Each pulsar train also has controls for amplitude and spatial trajectory.
Figure 16.16 shows the creation of a set of tables that are then sent to buffers.



486 Alberto de Campo
// figure 16.16 - Pulsar basics - make a set of waveform and control tables
(
q=0;
g.curr = (); // make a dict for the set of tables

g.curr.tab = O;

g.curr.tab.env = Env.perc.discretize;
g.curr.tab.pulsaret = Signal.sineFi11(1024, { 1.0.rand }.dup(7));

q.curr.tab.fund = 200 ** Env({1.0.rand}!8, {1.0.rand}!7, \sin).discretize.as(Array);
q.curr.tab.form = 500 ** ( 0.5 + Env({rrand(0.0, 1.0)}!8, {1.0.rand}!7,
\sin).discretize.as(Array));

q.curr.tab.amp
g.curr.tab.pan

q.bufs = q.curr.tab.collect({ |val, key| Buffer.sendCollection(s, val, 1) });
)

q.bufs.pulsaret.plot2("a pulsaret");

// random tables for pulsaret and envelope waveforms:

// random tables for the control parameters:

0.2.dup(1024);
Signal.sineFi11(1024, { 1.0.rand }.dup(7));

1}

// make buffers from all of them:

// plot one of them

Figure 16.16
Pulsar basics: a set of waveform and control tables.

Figure 16.17 realizes 1 pulsar train with a GrainBuf, initially with fixed parame-
ter values. Changing the parameters 1 at a time and crossfading between them
demonstrates the effect of movements of formfreq and fundfreq. Finally, replacing
the controls with looping tables completes a minimal pulsar synthesis program.

Figure 16.18 shows the sending of different tables to the buffers. One can make
graphical drawing interfaces for the tables and send any changes in the tables to the
associated buffers.

PulsarGenerator realized several aspects of advanced pulsar synthesis: 3 parallel
pulsar trains (sharing fundfreq but with independent formfreq, amp, and pan con-
trols) are being driven from separate control tables. One can switch or crossfade
between sets of tables. Both table sets and banks of table sets can be saved to disk.

Pulsar masking was implemented in 2 forms: burst ratio specified how many
pulses to play and how many to mute; (e.g., 3:2 would play this sequence of pulses:
1,1,1,0,0,1,1,1,0,0). This allowed generating subharmonics of the fundamental
frequency. Alternatively, stochastic pulse masking was controlled from a table with
values between 1.0 (play every pulse) and 0.0 (mute every pulse); 0.5 meant playing
each pulse with a 50% chance, which could create interesting intermittency. In SC3,
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(
p = ProxySpace.push;

// fund, form, amp, pan
~controls = [ 16, 100, 0.5, 0];
~pulsarl.set(\wavebuf, q.bufs.pulsaret.bufnum);
~pulsarl.set(\envbuf, g.bufs.env.bufnum);

~pulsarl = { |wavebuf, envbuf = -1|
var ctls = ~controls.kr;
var trig = Impulse.ar(ctls[0]);
var grdur = ctls[1].reciprocal;
var rate = ctls[1] * BufDur.kr(wavebuf);

GrainBuf.ar(2, trig, grdur, wavebuf, rate, 0, 4, ctls[3], envbuf);
i
~pulsarl.play;
)

// crossfade between control settings
~controls.fadeTime = 3;
~controls = [ 16, 500, 0.5, 0]; // change formfreq

~controls = [ 50, 500, 0.5, 0]; // change fundfreq
~controls = [ 16, 100, 0.5, 0]; // change both
~controls = [ rrand(12, 100), rrand(100, 1000)1;

( // control parameters from looping tables
~controls = { |looptime = 10|
var rate = BufDur.kr(q.bufs.pulsaret.bufnum) / looptime;
A2K.kr(PlayBuf.ar(1, [\fund, \form, \amp, \pan].collect(q.bufs[_1),
rate: rate, loop: 1));

Figure 16.17
Pulsars as nodeproxies using GrainBuf.
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q.bufs.pulsaret.sendCollection(Array.linrand(1024, -1.0, 1.0)); // noise burst
q.bufs.pulsaret.read("sounds/allwlk0l.wav", 44100 * 1.5); // sample
q.bufs.pulsaret.sendCollection(Pbrown(-1.0, 1.0, 0.2).asStream.nextN(1024));

// make a new random fundfreq table, and send it
g.curr.tab.fund = 200 ** Env({1.0.rand}!8, {1.0.rand}!7, \sin).discretize.as(Array);
q.bufs.fund.sendCollection(qg.curr.tab.fund);

// and a new random formfreq table
g.curr.tab.form = 500 ** ( 0.5 + Env({rrand(0.0, 1.0)}!8, {1.0.rand}!7,
\sin).discretize.as(Array));
q.bufs.form.sendCollection(qg.curr.tab.form);

Figure 16.18
Making new tables and sending them to buffers.

burst ratio could be reimplemented by multiplying the trigger signal with demand
UGens to provide a sequence, and random masking with CoinGate.

Pulsar synthesis can also be implemented with client-side control, where one can
choose to control parameters from patterns such as envelope segment players or
from tables (see the examples on the book Web site). This provides elegant control
of finer aspects of pulsar synthesis, such as handling pulsar width modulation (what
to do when pulses overlap), extensions to parallel pulse trains, and variants of pulse
masking.

Among others, Curtis Roads and Florian Hecker realized a number of pieces with
material generated by pulsar synthesis. Pulsars can be used particularly well as ex-
citer signals for filters or as input material for convolution processes (Roads, 2001:
147-154). Tommi Kerdnen has implemented an SC3 version of PulsarGenerator
with a slightly different feature set, which however, has not yet been officially
released.

16.6 Sound Files and Microsound

Sound files are a great source for waveform material in microsound synthesis, as
they provide a lot of variety almost for free, simply by accessing different segments
within their duration. Pitch shifting and time scaling are 2 classic uses of granular
synthesis in this context. However, both writing more complex Synthdefs for granu-
lating sound files (e.g., with filtering) and analyzing sound file waveforms to use
them as a source for microstructure provide further areas to explore. Below we pres-
ent examples for both: constant-Q granulation and wavesets.
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16.6.1 Granular Pitch Shifting and Time Scaling

The idea of being able to manipulate time and pitch separately in a recorded sound
is quite old; in the 1940s Dennis Gabor (who won the Nobel Prize for physics in
1971 for the invention of holography) built a “Kinematical Frequency Convertor,”
a machine for experimenting with pitch/time manipulations. The principle has re-
mained the same: grains read from a recording are overlapped to create a seamless
stream; depending on where in the recording the grain read begins and how fast the
signal is read, time and pitch of the original can be changed.

Figure 16.19 provides a setup for experimenting. pitchRatio determines how
much faster or slower the waveform in each grain is played, pitchRd adds random-
ization to it. grainRate is the number of grains per second, and overlap sets how
many grains will overlap at any time. posSpeed determines whether time is stretched
or compressed by changing the speed of the read position in the file, and posRd adds
randomization to it. The NdefGui interface allows tweaking the parameters, so, for
example, to time stretch a file by 4, one would set posSpeed to 0.25 and adjust
pitchRd and posRd for a compromise between metallic artifacts (common with no
randomizing) and scattering artifacts (too much randomness). The PitchShift UGen
works similarly on input signals.

Tuning pitch-time changes to sound lifelike can be difficult, and many commercial
applications spend much effort on it. Bringing forward details in recordings in non-
naturalistic ways may be a more rewarding use for writing one’s own pitch-time
manipulating instruments.

16.6.2 Constant-Q Granulation

Constant-Q granulation is just one of many possible extensions of file granulation.
In it, each grain is bandpass filtered, letting the filter ring while it decays. Figure
16.20 shows the Synthdef for it: a grain is read around a center position within the
file, ring time and amplitude compensation are estimated for the given frequency and
resonance, and a cutoff envelope ends synthesis after ring time is over.

Parameter tests (on the book Web site) demonstrate accessing different file regions
and varying exciter grain duration; high rq values color the grain only a little, and
low rq values create ringing pitches. Because the resonance factor q is constant,
lower frequencies will ring longer.

Figure 16.21 demonstrates creating a stream of constant-Q grains with a Pbindef
pattern, which allows for changing all parameter patterns while playing.

With this synthesis flavor, one can balance how much of the sound file material
shines through and how strongly structures in grain timing and resonating pitches
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p = ProxySpace.push(s.boot);
b = Buffer.read(s, "sounds/allwlk01-44_1.aiff");
(

~timepitch = {arg sndbuf, pitchRatio=1, pitchRd=0.01, grainRate=10, overlap=2,
posSpeed=1, posRd=0.01;

var graindur = overlap / grainRate;

var pitchrate = pitchRatio + LFNoise0.kr(grainRate, pitchRd);

var position = LFSaw.kr(posSpeed / BufDur.kr(sndbuf)).range(0, 1)
+ LFNoise0.kr(grainRate, posRd);

GrainBuf.ar(2, Impulse.kr(grainRate), graindur, sndbuf, pitchrate,
position, 4, 0, -1)
¥
~timepitch.set(\sndbuf, b.bufnum);
~timepitch.play;
b &

Spec.add(\pitchRatio, [0.25, 4, \expl);
Spec.add(\pitchRd, [0, 0.5, \amp]);
Spec.add(\grainRate, [1, 100, \expl);
Spec.add(\overlap, [0.25, 16, \expl);
Spec.add(\posSpeed, [-2, 2]);
Spec.add(\posRd, [0, 0.5, \amp]l);
NdefGui (~timepitch, 10);

// reconstruct original
~timepitch.set(\pitchRatio, 1, \pitchRd, 0, \grainRate, 20, \overlap, 4, \posSpeed,
1, \posRd, 0);

// four times as long: tweak pitchRd and poslitter to reduce artifacts
~timepitch.set(\pitchRatio, 1, \pitchRd, 0, \grainRate, 20, \overlap, 4, \posSpeed,
0.25, \posRd, 0);

// random read position, random pitch
~timepitch.set(\pitchRatio, 1, \pitchRd, 0.5, \grainRate, 20, \overlap, 4,
\posSpeed, 0.25, \posRd, 0.5);

Figure 16.19
A nodeproxy for time-pitch changing.
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b = Buffer.read(s, "sounds/allwlk01-44_1.aiff");

(

SynthDef(\constQ, { |out, bufnum=0, amp=0.5, pan, centerPos=0.5, sustain=0.1,
rate=1, freq=400, rg=0.3|

2

)

Synth(\constQ, [\bufnum, b, \freq, exprand(100, 10000), \rq, exprand(0.01, 0.1),
\sustain, 0.011);

var
var
var
var

var

var filtered = BPF.ar( grain, freq, rq, ampcomp );

OffsetOut.ar(out, Pan2.ar(filtered, pan, cutoffEnv))
}, \ir.dup(8)).add;

ringtime = (2.4 / (freq * rq) * 0.66).min(0.5); // estimated

ampcomp = (rq ** -1) * (400 / freq ** 0.5);

envSig = EnvGen.ar(Env([0, amp, 0], [0.5, 0.5] * sustain, \welch));
cutoffEnv = EnvGen.kr(Env([1, 1, 0], [sustain+ringtime,0.01]), doneAction:

grain = PlayBuf.ar(1, bufnum, rate, O,
centerPos - (sustain * rate * 0.5) * BufSampleRate.ir(bufnum),
1) * envSig;

Figure 16.20
A constant-Q Synthdef.

shape the sounds created. Many other transformation processes can be applied to
each grain, with individual parameters creating finely articulated textures.

16.6.3 Wavesets

Trevor Wishart introduced the waveset concept in Audible Design (1994), imple-
mented it in the CDP framework as transformation tools, and employed it in several
compositions (e.g., Tongues of Fire, 1994). Though Wishart treats wavesets mainly
as units for transforming sound material, they can in fact also be used to turn a
sound file into a large repository of waveform segments to be employed for a variety
of synthesis concepts.

A waveset is defined as the waveform segment from 1 zero-crossing of a signal to
the third, so in a sine wave, it corresponds to the sine wave’s period. In aperiodic
signals (such as sound files) the length and shape of waveform segments vary widely.
The Wavesets class analyzes a sound file into wavesets, maintaining zero-crossings,
lengths, amplitudes, and other values of each waveset (see the Wavesets Help file).
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(

Pbindef(\griq,
\instrument, \constQ, \bufnum, b.bufnum,
\sustain, 0.01, \amp, 0.2,
\centerPos, Pn(Penv([1, 2.0], [10]1, \1in)),
\dur, Pn(Penv([0.01, 0.09, 0.03].scramble, [0.38, 0.62] * 10, \exp)),
\rate, Pwhite(0.95, 1.05),
\freq, Pbrown(64.0, 120, 8.0).midicps,
\pan, Pwhite(-1, 1, inf),
\rg, 0.03

).play;

)

// changing parameters while playing
Pbindef(\grlQ, \rq, 0.1);
Pbindef(\griQ, \rq, 0.01);
Pbindef(\grlQ, \sustain, 0.03, \amp, 0.08);
Pbindef(\grlQ, \freq, Pbrown(80, 120, 18.0).midicps);

Pbindef(\grlQ, \rq, 0.03);
Pbindef(\grilqQ, \rate, Pn(Penv([1, 2.01, [6], \1in)));

// variable duration
Pbindef(\grlQ, \dur, Pwhite(0.01, 0.02));

// a rhythm that ends
Pbindef(\grlQ, \dur, Pgeom(0.01, 1.1, 40));

Figure 16.21
A stream of constant-Q grains.

Table 16.1 lists most of Wishart’s waveset transforms with short descriptions.
Some of these transformations can be demonstrated with just the Wavesets class, a
single SynthDef, and a Pbindef pattern. Figure 16.22 creates a waveset from a sound
file and shows accessing its internal data. It also displays accessing and plotting indi-
vidual wavesets or groups of wavesets. Figures 16.23 and 16.24 show a single wave-
set and a waveset group, respectively.

Figure 16.25 shows accessing the buffer that a waveset automatically creates, as
well as a synthdef to play wavesets with: buf is the buffer that corresponds to the
waveset, start and length are the start frame and length (in frames) of the waveset
to be played, and sustain is the duration for which to loop over the buffer segment.
Since the envelope cuts off instantly, one should calculate the precise sustain time
and pass it in, as shown in the last section, by using the frameFor or eventFor method.
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Table 16.1

Overview of Waveset Transforms

Transposition e.g., take every second waveset, play back at half speed

Reversal play every waveset or group time reversed

Inversion Turn every half waveset inside out

Omission play silence for every m out of n wavesets (or randomly by
percentage)

Shuffling switch every 2 adjacent wavesets or groups

Distortion multiply waveform by a power factor (i.e., exponentiate with
constant peak)

Substitution replace waveset with any other waveform (e.g., sine, square, other

Harmonic distortion

waveset)

add double-speed and triple-speed wavesets to every waveset;
weight and sum them

Averaging scale adjacent wavesets to average length and average their
waveforms
Enveloping impose an amplitude envelope on a waveset or group

Waveset transfer

combine waveset timing from 1 source with waveset forms from
another

Interleaving take alternating wavesets or groups from 2 sources

Time stretching repeat every waveset or group n times (creates “pitch beads”)
Interpolated time interpolate between waveforms and durations of adjacent wavesets
stretching over n crossfading repetitions

Time shrinking

keep every nth waveset or group

In order to show Wishart’s transforms, we use a Pbindef, so we can replace pat-
terns or fixed values in it while it is running. It reconstructs part of the sound file
waveset by waveset (see figure 16.26.)

Now we can introduce waveset transposition, reversal, time stretching, omission,
and shuffling in 1-line examples. (See figure 16.27.)

Waveset harmonic distortion can be realized by playing a chord for each waveset

at integer multiples of the rate and appropriate amplitudes. Waveset interleaving
would also be an easy exercise, as it only requires alternating between 2 waveset
objects as sources.

Waveset substitution requires more effort, as one needs to scale the substitute
waveform into the time of the original waveform. Substituting a sine wave lets the
time structure of the wavesets emerge, especially when each waveset is repeated.
Figure 16.28 also considers the amplitudes for each waveset: since the substitute
signal is full volume, scaling it to the original waveset’s volume keeps the dynamic
contour intact. Finally, different substitute waveforms can have quite different
effects.
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w = Wavesets.from("sounds/allwlk01l.wav");

w.Xxings; // all integer indices of the zero crossings found
w.numXings; // the total number of zero crossings

w.lengths; // lengths of all wavesets

W.amps; // peak amplitude of every waveset

w.maxima; // index of positive maximum value in every waveset
w.minima; // index of negative minimum value in every waveset
w.fracXings; // fractional zerocrossing points

w.fracLengths; // and lengths: allows more precise looping.

w.lengths.plot; // show distribution of Tlengths
w.amps.plot;

// get data for a single waveset: frameIndex, length (in frames), dur
w.frameFor (140, 1);
w.ampFor (140, 1); // peak amplitude of that waveset or group

// extract waveset by hand
w.signal.copyRange(w.xings[150], w.xings[151]).pTot("waveset 150");
w.plot(140, 1); // convenience plotting
w.plot(1510, 1);

// plot a group of 5 adjacent wavesets
w.plot(1510, 5)

Figure 16.22
A Wavesets object.

Waveset averaging can be realized by adapting this example to play # wavesets
simultaneously at a time, all scaled to the same average waveset duration, looped 7
times, and divided by # for average amplitude.

Waveset inversion, distortion, enveloping, and time stretching with interpolation
all require writing special Synthdefs. Of these, interpolation is sonically most inter-
esting. Although one can imagine multiple ways of interpolating between wavesets,
in the example on the book Web site the 2 wavesets are synchronized: the sound
begins with waveset1 at original speed and waveset2 scaled to the same loop dura-
tion, but silent. As the amplitude crossfades from waveset1 to waveset 2, so does
the loop speed, so that the interpolation ends with only waveset 2 at its original
speed. The example can be extended to plays a seamless stream of parameterizable
interpolations.
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"-6 fee Waveset al1wlk01.wav : startWs 140, length 1, sustain 0.000431

Figure 16.23
A single waveset plotted.

Figure 16.24
A waveset group of size 5.
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// A wavesets loads the file into a buffer by default.
b = w.buffer;
// Wavesets.prepareSynthDefs Toads this synthdef:
SynthDef(\wvst0, { arg out = 0, buf = 0, start = 0, length =
441, playRate = 1, sustain = 1, amp=0.2, pan;
var phasor = Phasor.ar(0, BufRateScale.ir(buf) *
playRate, 0, Tength) + start;
var env = EnvGen.ar(Env([amp, amp, 0], [sustain, 0]),
doneAction: 2);
var snd = BufRd.ar(1, buf, phasor) * env;

OffsetOut.ar(out, Pan2.ar(snd, pan));
}, \ir.dup(8)).add;
)

// play from frame 0 to 440, Tooped for 0.1 secs, so ca 10 repeats.
(instrument: \wvstO, bufnum: b.bufnum, start: 0, length: 440, amp: 1,
sustain: 0.1).play;

// get data from waveset
(
var start, length, sustain, repeats = 20;
#start, length, sustain = w.frameFor(150, 5);

( dinstrument: \wvstO, bufnum: b.bufnum, amp: 1,

start: start, length: length, sustain: sustain * repeats
).play;
)

// or even simpler:
w.eventFor(startWs: 150, numWs: 5, repeats: 20, playRate:
1) .put(\amp, 0.5).play;

Figure 16.25
Playing Wavesets from buffers.
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(

Pbindef(\wsl).clear;
Pbindef(\ws1,

.,

\dur, Pkey(\sustain)
).play;
)

// by default, this pattern reconstructs a soundfile segment as is.

\instrument, \wvst0,

\startWs, Pn(Pseries(0, 1, 3000), 1),

\numWs, 1,

\playRate, 1,

\bufnum, b.bufnum,

\repeats, 1,

\amp, 0.4,

[\start, \length, \sustain], Pfunc({ |ev]|
var start, length, wsDur;

#start, length, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);
[start, length, wsDur * ev[\repeats] / ev[\playRate].abs]

Figure 16.26
A pattern to play Wavesets.

Why stick to using wavesets for recognizable sound file transformations? One
can also start over with a task that plays a single waveset as a granular stream
and extend that gradually. Figure 16.29 begins with a fixed grain repeat rate and
starting waveset, later replaced with different values and streams for generating
values.

In figure 16.29, wait time is derived from the waveset’s duration, and a time gap
between wavesets is added. All parameters are called with .next, so they can be di-
rectly replaced with infinite streams.

A wide range of possibilities opens here: one can create special orders of the wave-
sets based, for example, on their lengths or amplitudes; one can filter all waveset
indices by some criterion (e.g., keep only very soft ones (see figure 16.30)).

For just 1 example for modifying parameters based on waveset information, see
figure 16.31. When we read the waveset lengths as a pitch contour of the file, we can
pull all waveset lengths closer to a pitch center, or even invert their lengths around
the center to make long wavesets short and vice versa. The pitchContour variable
determines how drastically this transformation is applied. Waveset omission is also
shown.
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// waveset transposition: every second waveset, half speed
Pbindef(\wsl, \playRate, 0.5, \startWs, Pn(Pseries(0, 2, 500), 1)).play;

// reverse every single waveset
Pbindef(\wsl, \playRate, -1, \startWs, Pn(Pseries(0, 1, 1000), 1)).play;
// reverse every 2 wavesets
Pbindef(\wsl, \numWs, 2, \playRate, -1, \startWs, Pn(Pseries(0, 2, 1000), 1)).play;
// reverse every 20 wavesets
Pbindef(\wsl, \numWs, 20, \playRate, -1, \startWs, Pn(Pseries(0, 20, 1000),
1).play;
// restore
Pbindef(\wsl, \numWs, 1, \playRate, 1, \startWs, Pn(Pseries(0, 1, 1000), 1)).play;

// time stretching
Pbindef(\wsl, \playRate, 1, \repeats, 2).play;
Pbindef(\wsl, \playRate, 1, \repeats, 4).play;
Pbindef(\wsl, \playRate, 1, \repeats, 6).play;
Pbindef(\wsl, \repeats, 1).play; // restore

// waveset omission: drop every second
Pbindef(\wsl, \numWs, 1, \freq, Pseq([1, \], inf) ).play;
Pbindef(\wsl, \numWs, 1, \freq, Pseq([1,1, \, \1, inf) ).play;
Pbindef(\wsl, \numWs, 1, \freq, Pfunc({ if (0.25.coin, 1, \) }) ).play; // drop
randomly
Pbindef(\wsl, \numWs, 1, \freq, 1, \startWs, Pn(Pseries(0, 1, 1000)) ).play; //
restore

// waveset shuffling (randomize waveset order +- 5, 25, 125)
Pbindef(\wsl, \startWs, Pn(Pseries(0, 1, 1000), 1) + Pfunc({ 5.rand2 })).play;
Pbindef(\wsl, \startWs, Pn(Pseries(0, 1, 1000), 1) + Pfunc({ 25.rand2 })).play;
Pbindef(\wsl, \startWs, Pn(Pseries(0, 1, 1000), 1) + Pfunc({ 125.rand2 })).play;

Figure 16.27
Some of Trevor Wishart’s transforms.
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// the waveform to substitute
¢ = Buffer.alloc(s, 512); c.sendCollection(Signal.sineFil11(512, [11));
(
Pbindef(\wsl).clear;
Pbindef(\wsl,
\instrument, \wvst0,
\startWs, Pn(Pseries(0, 1, 1000), 5),
\numWs, 1, \playRate, 1,
\buf, c.bufnum, // sine wave
\repeats, 1,
\amp, 1,
[\start, \length, \sustain], Pfunc({ |ev]
var start, length, wsDur, origRate;
origRate = ev[\playRate];

// get orig waveset specs
#start, Tength, wsDur = w.frameFor(ev[\startWs], ev[\numWs]);

// adjust playrate for different Tength of substituted wave
ev[\playRate] = origRate * (512 / length);

// get amplitude from waveset, to scale full volume sine wave
ev[\amp] = ev[\amp] * w.ampFor(ev[\startWs], ev[\numWs]);

[0, 512, wsDur * ev[\repeats] / origRate.abs]

j i

\dur, Pkey(\sustain)
).play;
)

// clearer sinewave-ish segments
Pbindef(\wsl, \playRate, 1, \repeats, 2).play;
Pbindef(\wsl, \playRate, 1, \repeats, 6).play;
Pbindef(\wsl).stop;

// different waveforms
c.sendCollection(Signal.sineFi11(512, 1/(1..4).squared.scramble));
c.sendCollection(Signal.rand(512, -1.0, 1.0));
c.sendCollection(Signal.sineFi11(512, [1]));

c.plot;

Figure 16.28
Waveset substitution.
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// very simple first pass, fixed repeat time
(
Tdef(\wsl).set(\startWs, 400);
Tdef(\ws1).set(\numWs, 5);
Tdef(\wsl).set(\repeats, 5);

Tdef(\wsl, { |ev]
var startFrame, length, wsSustain;

Toop {
#startFrame, length, wsSustain = w.frameFor(ev.startWs.next,

ev.numis) ;

(instrument: \wvstQ, bufnum: b.bufnum, amp: 1,
start: startFrame, length: Tength,
sustain: wsSustain * ev.repeats;

).play;

0.1.wait;
}
}).play;
)

Tdef(\wsl).set(\startWs, 420);
Tdef(\wsl).set(\repeats, 3);
Tdef(\wsl).set(\numWs, 2);

// drop in a pattern for starting waveset
Tdef(\wsl).set(\startWs, Pn(Pseries(0, 5, 400) + 500, inf).asStream);

Figure 16.29
Wavesets played with a Tdef.

16.7 Conclusions

The possibilities of microsound as a resource for both sound material and structural
ideas are nowhere near being exhausted. One can easily find personal, idiosyncratic
ways to create music by exploring recombinations and juxtapositions of synthesis
approaches and methods for structuring larger assemblages of microsound events.
Due to its generality, SuperCollider supports many different working methods and
allows changing directions quite flexibly. To give just 1 example, the pattern library
offers many ways to create intricately detailed structures that may lead to fascinat-
ing microsound textures. Independent of one’s aesthetic preferences, and of pre-
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(
Tdef(\ws1).set(\gap, 3);
Tdef(\wsl, { |ev|
var startFrame, Tength, wsSustain, reps;

Toop {
reps = ev.repeats.next;

#startFrame, Tength, wsSustain =
w.frameFor(ev.startWs.next, ev.numWs.next);

(instrument: \wvstQ, bufnum: b.bufnum, amp: 1,
start: startFrame, length: Tength,
sustain: wsSustain * reps,
pan: 1.0.rand2

).play;

// derive waittime from waveset sustain time
// add gap based on waveset sustain time
(wsSustain * (reps + ev.gap.next)).wait;
}
B .play;
)
// experiment with dropping in patterns:
// very irregular gaps
Tdef(\wsl).set(\gap, { exprand(0.1, 20) });
// sometimes continuous, sometimes gaps
Tdef(\wsl).set(\gap, Pbrown(-10.0, 20, 2.0).max(0).asStream);

// random repeats
Tdef(\wsl).set(\repeats, { exprand(l, 20).round });
// randomize number of wavesets per group
Tdef(\wsl).set(\numWs, { exprand(3, 20).round });
Tdef(\ws1).set(\nums, 3, \repeats, { rrand(2, 5) 1);

Tdef(\ws1).stop;

Figure 16.30
Waittime derived from waveset duration with a gap added.
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(
Tdef(\wsl).set(\startWs, Pn(Pseries(0, 5, 400) + 500, inf).asStream);

Tdef(\ws1).set(\gap, 0);
Tdef(\wsl).set(\pitchContour, 0);
Tdef(\ws1).set(\keepCoin, 1.0);
Tdef( 'wsl' ).set( 'repeats' , 5 );
Tdef( 'wsl' ).set( 'numWs' , 3 );

Tdef(\wsl, { |ev]
var startFrame, Tength, wsSustain, reps, numWs, Ten2Avg;
var squeezer, playRate;
Toop {
reps = ev.repeats.next;
numWs = ev.numWs.next;

#startFrame, Tength, wsSustain =
w.frameFor(ev.startWs.next, numiWs);

len2Avg = length / numWs / w.avglLength;
squeezer = len2Avg ** ev.pitchContour.next;
wsSustain = wsSustain / squeezer;

playRate = 1 * squeezer;

if (ev.keepCoin.next.coin) {

(instrument: \wvst0, bufnum: b.bufnum, amp: 1,
start: startFrame, length: Tength,
sustain: wsSustain * reps,
playRate: playRate,
pan: 1.0.rand2

).play;

i

(wsSustain * (reps + ev.gap.next)).wait;

}
}).play;
)

// try different pitch Contours:
Tdef(\wsl).set(\pitchContour, 0); // original pitch

Tdef(\ws1).set(\pitchContour, 0.5); // flattened contour

Figure 16.31
Wavesets with pitch contour and dropout rate.
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// add a pitch contour envelope
Tdef(\ws1).set(\pitchContour, Pn(Penv([0, 2, 0], [21,
131)).asStream);

Figure 16.31
(continued)
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